Python是一種功能強(qiáng)大的編程語(yǔ)言,被廣泛應(yīng)用于數(shù)據(jù)分析、人工智能、網(wǎng)站開發(fā)等各個(gè)領(lǐng)域。它具有簡(jiǎn)潔易讀的語(yǔ)法和豐富的庫(kù),讓編程變得簡(jiǎn)單高效。若想更好地掌握Python,開啟自己的創(chuàng)新之旅,不妨嘗試一些具體的代碼示例。
- 數(shù)據(jù)分析與可視化
import pandas as pd
import matplotlib.pyplot as plt
data = {'Name': ['Alice', 'Bob', 'Cathy', 'David'],
'Age': [25, 30, 35, 40]}
df = pd.DataFrame(data)
plt.bar(df['Name'], df['Age'])
plt.xlabel('Name')
plt.ylabel('Age')
plt.title('Age Distribution')
plt.show()
登錄后復(fù)制
- 簡(jiǎn)單的爬蟲
import requests from bs4 import BeautifulSoup url = 'http://example.com' response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') print(soup.prettify())
登錄后復(fù)制
- 機(jī)器學(xué)習(xí)實(shí)踐
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print('Accuracy:', accuracy_score(y_test, predictions))
登錄后復(fù)制
通過(guò)這些簡(jiǎn)單的示例,你可以體驗(yàn)Python在數(shù)據(jù)分析、網(wǎng)絡(luò)爬






