一直對多線程編程這一塊很陌生,決定花一點時間整理一下。
os:ubuntu 10.04 c++
1.最基礎,進程同時創建5個線程,各自調用同一個函數
#include <IOStream> #include <pthread.h> //多線程相關操作頭文件,可移植眾多平臺 using namespace std; #define NUM_THREADS 5 //線程數 void* say_hello( void* args ) { cout << "hello..." << endl; } //函數返回的是函數指針,便于后面作為參數 int main() { pthread_t tids[NUM_THREADS]; //線程id for( int i = 0; i < NUM_THREADS; ++i ) { int ret = pthread_create( &tids[i], NULL, say_hello, NULL ); //參數:創建的線程id,線程參數, 線程運行函數的起始地址,運行函數的參數 if( ret != 0 ) //創建線程成功返回0 { cout << "pthread_create error:error_code=" << ret << endl; } } pthread_exit( NULL ); //等待各個線程退出后,進程才結束,否則進程強制結束,線程處于未終止的狀態 }
輸入命令:g++ -o muti_thread_test_1 muti_thread_test_1.cpp -lpthread
注意:
1)此為c++程序,故用g++來編譯生成可執行文件,并且要調用處理多線程操作相關的靜態鏈接庫文件pthread。
2)-lpthread 編譯選項到位置可任意,如g++ -lpthread -o muti_thread_test_1 muti_thread_test_1.cpp
3)注意gcc和g++的區別,轉到此文:點擊打開鏈接
測試結果:
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_1 hello...hello... hello... hello... hello... wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_1 hello...hello...hello... hello... hello...權協議,轉載請附上原文出處鏈接及本聲明。 原文鏈接:https://blog.csdn.net/hitwengqi/article/details/8015646
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_1 hello...hello...hello... hello... hello...
可知,兩次運行的結果會有差別,這不是多線程的特點吧?這顯然沒有同步?還有待進一步探索...
多線程的運行是混亂的,混亂就是正常?
2.線程調用到函數在一個類中,那必須將該函數聲明為靜態函數函數
因為靜態成員函數屬于靜態全局區,線程可以共享這個區域,故可以各自調用。
#include <iostream> #include <pthread.h> using namespace std; #define NUM_THREADS 5 class Hello { public: static void* say_hello( void* args ) { cout << "hello..." << endl; } }; int main() { pthread_t tids[NUM_THREADS]; for( int i = 0; i < NUM_THREADS; ++i ) { int ret = pthread_create( &tids[i], NULL, Hello::say_hello, NULL ); if( ret != 0 ) { cout << "pthread_create error:error_code" << ret << endl; } } pthread_exit( NULL ); }
測試結果
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_2 hello... hello... hello... hello... hello...
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_2 hello...hello...hello... hello... hello...
3.如何在線程調用函數時傳入參數呢?
先看下面修改的代碼,傳入線程編號作為參數:
#include <iostream> #include <pthread.h> //多線程相關操作頭文件,可移植眾多平臺 using namespace std; #define NUM_THREADS 5 //線程數 void* say_hello( void* args ) { int i = *( (int*)args ); //對傳入的參數進行強制類型轉換,由無類型指針轉變為整形指針,再用*讀取其指向到內容 cout << "hello in " << i << endl; } //函數返回的是函數指針,便于后面作為參數 int main() { pthread_t tids[NUM_THREADS]; //線程id cout << "hello in main.." << endl; for( int i = 0; i < NUM_THREADS; ++i ) { int ret = pthread_create( &tids[i], NULL, say_hello, (void*)&i ); //傳入到參數必須強轉為void*類型,即無類型指針,&i表示取i的地址,即指向i的指針 cout << "Current pthread id = " << tids[i] << endl; //用tids數組打印創建的進程id信息 if( ret != 0 ) //創建線程成功返回0 { cout << "pthread_create error:error_code=" << ret << endl; } } pthread_exit( NULL ); //等待各個線程退出后,進程才結束,否則進程強制結束,線程處于未終止的狀態 }
測試結果:
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_3 hello in main.. Current pthread id = 3078458224 Current pthread id = 3070065520 hello in hello in 2 1 Current pthread id = hello in 2 3061672816 Current pthread id = 3053280112 hello in 4 Current pthread id = hello in 4 3044887408
顯然不是想要的結果,調用順序很亂,這是為什么呢?
這是因為多線程到緣故,主進程還沒開始對i賦值,線程已經開始跑了...?
修改代碼如下:
#include <iostream> #include <pthread.h> //多線程相關操作頭文件,可移植眾多平臺 using namespace std; #define NUM_THREADS 5 //線程數 void* say_hello( void* args ) { cout << "hello in thread " << *( (int *)args ) << endl; } //函數返回的是函數指針,便于后面作為參數 int main() { pthread_t tids[NUM_THREADS]; //線程id int indexes[NUM_THREADS]; //用來保存i的值避免被修改 for( int i = 0; i < NUM_THREADS; ++i ) { indexes[i] = i; int ret = pthread_create( &tids[i], NULL, say_hello, (void*)&(indexes[i]) ); if( ret != 0 ) //創建線程成功返回0 { cout << "pthread_create error:error_code=" << ret << endl; } } for( int i = 0; i < NUM_THREADS; ++i ) pthread_join( tids[i], NULL ); //pthread_join用來等待一個線程的結束,是一個線程阻塞的函數 }
測試結果:
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_ 3hello in thread hello in thread hello in thread hello in thread hello in thread 30124
這是正常的嗎?感覺還是有問題...待續
代碼中如果沒有pthread_join主線程會很快結束從而使整個進程結束,從而使創建的線程沒有機會開始執行就結束了。加入pthread_join后,主線程會一直等待直到等待的線程結束自己才結束,使創建的線程有機會執行。
4.線程創建時屬性參數的設置pthread_attr_t及join功能的使用
線程的屬性由結構體pthread_attr_t進行管理。
typedef struct { int detachstate; 線程的分離狀態 int schedpolicy; 線程調度策略 struct sched_param schedparam; 線程的調度參數 int inheritsched; 線程的繼承性 int scope; 線程的作用域 size_t guardsize; 線程棧末尾的警戒緩沖區大小 int stackaddr_set; void * stackaddr; 線程棧的位置 size_t stacksize; 線程棧的大小 }pthread_attr_t;
#include <iostream> #include <pthread.h> using namespace std; #define NUM_THREADS 5 void* say_hello( void* args ) { cout << "hello in thread " << *(( int * )args) << endl; int status = 10 + *(( int * )args); //線程退出時添加退出的信息,status供主程序提取該線程的結束信息 pthread_exit( ( void* )status ); } int main() { pthread_t tids[NUM_THREADS]; int indexes[NUM_THREADS]; pthread_attr_t attr; //線程屬性結構體,創建線程時加入的參數 pthread_attr_init( &attr ); //初始化 pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是設置你想要指定線程屬性參數,這個參數表明這個線程是可以join連接的,join功能表示主程序可以等線程結束后再去做某事,實現了主程序和線程同步功能 for( int i = 0; i < NUM_THREADS; ++i ) { indexes[i] = i; int ret = pthread_create( &tids[i], &attr, say_hello, ( void* )&( indexes[i] ) ); if( ret != 0 ) { cout << "pthread_create error:error_code=" << ret << endl; } } pthread_attr_destroy( &attr ); //釋放內存 void *status; for( int i = 0; i < NUM_THREADS; ++i ) { int ret = pthread_join( tids[i], &status ); //主程序join每個線程后取得每個線程的退出信息status if( ret != 0 ) { cout << "pthread_join error:error_code=" << ret << endl; } else { cout << "pthread_join get status:" << (long)status << endl; } } }
測試結果:
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_4 hello in thread hello in thread hello in thread hello in thread 0hello in thread 321 4 pthread_join get status:10 pthread_join get status:11 pthread_join get status:12 pthread_join get status:13 pthread_join get status:14
5.互斥鎖的實現
互斥鎖是實現線程同步的一種機制,只要在臨界區前后對資源加鎖就能阻塞其他進程的訪問。
#include <iostream> #include <pthread.h> using namespace std; #define NUM_THREADS 5 int sum = 0; //定義全局變量,讓所有線程同時寫,這樣就需要鎖機制 pthread_mutex_t sum_mutex; //互斥鎖 void* say_hello( void* args ) { cout << "hello in thread " << *(( int * )args) << endl; pthread_mutex_lock( &sum_mutex ); //先加鎖,再修改sum的值,鎖被占用就阻塞,直到拿到鎖再修改sum; cout << "before sum is " << sum << " in thread " << *( ( int* )args ) << endl; sum += *( ( int* )args ); cout << "after sum is " << sum << " in thread " << *( ( int* )args ) << endl; pthread_mutex_unlock( &sum_mutex ); //釋放鎖,供其他線程使用 pthread_exit( 0 ); } int main() { pthread_t tids[NUM_THREADS]; int indexes[NUM_THREADS]; pthread_attr_t attr; //線程屬性結構體,創建線程時加入的參數 pthread_attr_init( &attr ); //初始化 pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是設置你想要指定線程屬性參數,這個參數表明這個線程是可以join連接的,join功能表示主程序可以等線程結束后再去做某事,實現了主程序和線程同步功能 pthread_mutex_init( &sum_mutex, NULL ); //對鎖進行初始化 for( int i = 0; i < NUM_THREADS; ++i ) { indexes[i] = i; int ret = pthread_create( &tids[i], &attr, say_hello, ( void* )&( indexes[i] ) ); //5個進程同時去修改sum if( ret != 0 ) { cout << "pthread_create error:error_code=" << ret << endl; } } pthread_attr_destroy( &attr ); //釋放內存 void *status; for( int i = 0; i < NUM_THREADS; ++i ) { int ret = pthread_join( tids[i], &status ); //主程序join每個線程后取得每個線程的退出信息status if( ret != 0 ) { cout << "pthread_join error:error_code=" << ret << endl; } } cout << "finally sum is " << sum << endl; pthread_mutex_destroy( &sum_mutex ); //注銷鎖 }
測試結果:
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_5 hello in thread hello in thread hello in thread 410 before sum is hello in thread 0 in thread 4 after sum is 4 in thread 4hello in thread 2 3 before sum is 4 in thread 1 after sum is 5 in thread 1 before sum is 5 in thread 0 after sum is 5 in thread 0 before sum is 5 in thread 2 after sum is 7 in thread 2 before sum is 7 in thread 3 after sum is 10 in thread 3 finally sum is 10
可知,sum的訪問和修改順序是正常的,這就達到了多線程的目的了,但是線程的運行順序是混亂的,混亂就是正常?
6.信號量的實現
信號量是線程同步的另一種實現機制,信號量的操作有signal和wait,本例子采用條件信號變量pthread_cond_t tasks_cond;
信號量的實現也要給予鎖機制。
#include <iostream> #include <pthread.h> #include <stdio.h> using namespace std; #define BOUNDARY 5 int tasks = 10; pthread_mutex_t tasks_mutex; //互斥鎖 pthread_cond_t tasks_cond; //條件信號變量,處理兩個線程間的條件關系,當task>5,hello2處理,反之hello1處理,直到task減為0 void* say_hello2( void* args ) { pthread_t pid = pthread_self(); //獲取當前線程id cout << "[" << pid << "] hello in thread " << *( ( int* )args ) << endl; bool is_signaled = false; //sign while(1) { pthread_mutex_lock( &tasks_mutex ); //加鎖 if( tasks > BOUNDARY ) { cout << "[" << pid << "] take task: " << tasks << " in thread " << *( (int*)args ) << endl; --tasks; //modify } else if( !is_signaled ) { cout << "[" << pid << "] pthread_cond_signal in thread " << *( ( int* )args ) << endl; pthread_cond_signal( &tasks_cond ); //signal:向hello1發送信號,表明已經>5 is_signaled = true; //表明信號已發送,退出此線程 } pthread_mutex_unlock( &tasks_mutex ); //解鎖 if( tasks == 0 ) break; } } void* say_hello1( void* args ) { pthread_t pid = pthread_self(); //獲取當前線程id cout << "[" << pid << "] hello in thread " << *( ( int* )args ) << endl; while(1) { pthread_mutex_lock( &tasks_mutex ); //加鎖 if( tasks > BOUNDARY ) { cout << "[" << pid << "] pthread_cond_signal in thread " << *( ( int* )args ) << endl; pthread_cond_wait( &tasks_cond, &tasks_mutex ); //wait:等待信號量生效,接收到信號,向hello2發出信號,跳出wait,執行后續 } else { cout << "[" << pid << "] take task: " << tasks << " in thread " << *( (int*)args ) << endl; --tasks; } pthread_mutex_unlock( &tasks_mutex ); //解鎖 if( tasks == 0 ) break; } } int main() { pthread_attr_t attr; //線程屬性結構體,創建線程時加入的參數 pthread_attr_init( &attr ); //初始化 pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是設置你想要指定線程屬性參數,這個參數表明這個線程是可以join連接的,join功能表示主程序可以等線程結束后再去做某事,實現了主程序和線程同步功能 pthread_cond_init( &tasks_cond, NULL ); //初始化條件信號量 pthread_mutex_init( &tasks_mutex, NULL ); //初始化互斥量 pthread_t tid1, tid2; //保存兩個線程id int index1 = 1; int ret = pthread_create( &tid1, &attr, say_hello1, ( void* )&index1 ); if( ret != 0 ) { cout << "pthread_create error:error_code=" << ret << endl; } int index2 = 2; ret = pthread_create( &tid2, &attr, say_hello2, ( void* )&index2 ); if( ret != 0 ) { cout << "pthread_create error:error_code=" << ret << endl; } pthread_join( tid1, NULL ); //連接兩個線程 pthread_join( tid2, NULL ); pthread_attr_destroy( &attr ); //釋放內存 pthread_mutex_destroy( &tasks_mutex ); //注銷鎖 pthread_cond_destroy( &tasks_cond ); //正常退出 }
測試結果:
先在線程2中執行say_hello2,再跳轉到線程1中執行say_hello1,直到tasks減到0為止。
wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_6 [3069823856] hello in thread 2 [3078216560] hello in thread 1[3069823856] take task: 10 in thread 2 [3069823856] take task: 9 in thread 2 [3069823856] take task: 8 in thread 2 [3069823856] take task: 7 in thread 2 [3069823856] take task: 6 in thread 2 [3069823856] pthread_cond_signal in thread 2 [3078216560] take task: 5 in thread 1 [3078216560] take task: 4 in thread 1 [3078216560] take task: 3 in thread 1 [3078216560] take task: 2 in thread 1 [3078216560] take task: 1 in thread 1